%% read the frame
cap = vision.VideoFileReader('multiple_ball.avi');
cap.VideoOutputDataType = 'double';
%% reduce noise by using opening
noise = strel('disk',3);
%% blob analysis
% to perform a blob analysis on the video frame we need to use step
% function :- parameter => (blob analysis system object , input image i.e open)
% function output 3 :- area , centroid , bounding box
blob = vision.BlobAnalysis('MinimumBlobArea',200,...
'MaximumBlobArea',5000);
% Create VideoPlayer
vidPlayer = vision.DeployableVideoPlayer;
%% while True
while ~isDone(cap)
% Read Frame
frame = step(cap);
% Convert RGB image to HSV
hsv = rgb2hsv(frame);
% Define thresholds for channel 1 based on histogram settings
channel1Min = 0.398;
channel1Max = 0.498;
% Define thresholds for channel 2 based on histogram settings
channel2Min = 0.355;
channel2Max = 1.000;
% Define thresholds for channel 3 based on histogram settings
channel3Min = 0.000;
channel3Max = 1.000;
% Create mask based on chosen histogram thresholds
Ibw = (hsv(:,:,1) >= channel1Min ) & (hsv(:,:,1) <= channel1Max) & ...
(hsv(:,:,2) >= channel2Min ) & (hsv(:,:,2) <= channel2Max) & ...
(hsv(:,:,3) >= channel3Min ) & (hsv(:,:,3) <= channel3Max);
% Use morphological operations to remove disturbances
opening = imopen(Ibw,noise);
% Extract the blobs from the frame
[object_area,object_centroid,bounding_box] = step(blob, opening);
% Draw a box around the detected objects
Ishape = insertShape(frame,'Rectangle',bounding_box);
% Insert a string of number of objects detected in the video frame.
numObj = length(object_area);
%Itext = step(hTextIns,Ishape,int32(numObj));
%Play in the video player
%step(vidPlayer, Itext);
step(vidPlayer, Ishape);
end
%% Clean
release(cap)
release(blob)
%release(hTextIns)
release(vidPlayer)