/** Print all the Catalan numbers from 0 to n, n being the user input.
* A Catalan number satifies the following two properties:
* C(0) = C(1) = 1; C(n) = sum(C(i).C(n-i-1)), from i = 0 to n-1
* Read more about Catalan numbers here:
https://en.wikipedia.org/wiki/Catalan_number
*/
#include <iostream>
using namespace std;
int *cat; // global array to hold catalan numbers
unsigned long int catalan_dp(int n) {
/** Using the tabulation technique in dynamic programming,
this function computes the first `n+1` Catalan numbers
Parameter
---------
n: The number of catalan numbers to be computed.
Returns
-------
cat[n]: An array containing the first `n+1` Catalan numbers
*/
// By definition, the first two Catalan numbers are 1
cat[0] = cat[1] = 1;
// Compute the remaining numbers from index 2 to index n, using tabulation
for (int i = 2; i <= n; i++) {
cat[i] = 0;
for (int j = 0; j < i; j++)
cat[i] += cat[j] * cat[i - j - 1]; // applying the definition here
}
// Return the result
return cat[n];
}
int main(int argc, char *argv[]) {
int n;
cout << "Enter n: ";
cin >> n;
cat = new int[n + 1];
cout << "Catalan numbers from 0 to " << n << " are:\n";
for (int i = 0; i <= n; i++) {
cout << "catalan (" << i << ") = " << catalan_dp(i) << endl;
// NOTE: Since `cat` is a global array, calling `catalan_dp`
// repeatedly will not recompute the the values already computed
// as in case of pre-computed values, the array will simply return them,
// instead of recomputing them.
}
return 0;
}
/** Sample Test Case:
$ cd "Dynamic Programming"
$ g++ Catalan-Numbers.cpp
$ ./a.exe
Enter n: 5
Catalan numbers from 0 to 5 are:
catalan (0) = 1
catalan (1) = 1
catalan (2) = 2
catalan (3) = 5
catalan (4) = 14
catalan (5) = 42
*/