import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('E:/videogame/Video_Games_Sales_as_at_22_Dec_2016.csv')
df.head(20)
Name | Platform | Year_of_Release | Genre | Publisher | NA_Sales | EU_Sales | JP_Sales | Other_Sales | Global_Sales | Critic_Score | Critic_Count | User_Score | User_Count | Developer | Rating | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Wii Sports | Wii | 2006.0 | Sports | Nintendo | 41.36 | 28.96 | 3.77 | 8.45 | 82.53 | 76.0 | 51.0 | 8 | 322.0 | Nintendo | E |
1 | Super Mario Bros. | NES | 1985.0 | Platform | Nintendo | 29.08 | 3.58 | 6.81 | 0.77 | 40.24 | NaN | NaN | NaN | NaN | NaN | NaN |
2 | Mario Kart Wii | Wii | 2008.0 | Racing | Nintendo | 15.68 | 12.76 | 3.79 | 3.29 | 35.52 | 82.0 | 73.0 | 8.3 | 709.0 | Nintendo | E |
3 | Wii Sports Resort | Wii | 2009.0 | Sports | Nintendo | 15.61 | 10.93 | 3.28 | 2.95 | 32.77 | 80.0 | 73.0 | 8 | 192.0 | Nintendo | E |
4 | Pokemon Red/Pokemon Blue | GB | 1996.0 | Role-Playing | Nintendo | 11.27 | 8.89 | 10.22 | 1.00 | 31.37 | NaN | NaN | NaN | NaN | NaN | NaN |
5 | Tetris | GB | 1989.0 | Puzzle | Nintendo | 23.20 | 2.26 | 4.22 | 0.58 | 30.26 | NaN | NaN | NaN | NaN | NaN | NaN |
6 | New Super Mario Bros. | DS | 2006.0 | Platform | Nintendo | 11.28 | 9.14 | 6.50 | 2.88 | 29.80 | 89.0 | 65.0 | 8.5 | 431.0 | Nintendo | E |
7 | Wii Play | Wii | 2006.0 | Misc | Nintendo | 13.96 | 9.18 | 2.93 | 2.84 | 28.92 | 58.0 | 41.0 | 6.6 | 129.0 | Nintendo | E |
8 | New Super Mario Bros. Wii | Wii | 2009.0 | Platform | Nintendo | 14.44 | 6.94 | 4.70 | 2.24 | 28.32 | 87.0 | 80.0 | 8.4 | 594.0 | Nintendo | E |
9 | Duck Hunt | NES | 1984.0 | Shooter | Nintendo | 26.93 | 0.63 | 0.28 | 0.47 | 28.31 | NaN | NaN | NaN | NaN | NaN | NaN |
10 | Nintendogs | DS | 2005.0 | Simulation | Nintendo | 9.05 | 10.95 | 1.93 | 2.74 | 24.67 | NaN | NaN | NaN | NaN | NaN | NaN |
11 | Mario Kart DS | DS | 2005.0 | Racing | Nintendo | 9.71 | 7.47 | 4.13 | 1.90 | 23.21 | 91.0 | 64.0 | 8.6 | 464.0 | Nintendo | E |
12 | Pokemon Gold/Pokemon Silver | GB | 1999.0 | Role-Playing | Nintendo | 9.00 | 6.18 | 7.20 | 0.71 | 23.10 | NaN | NaN | NaN | NaN | NaN | NaN |
13 | Wii Fit | Wii | 2007.0 | Sports | Nintendo | 8.92 | 8.03 | 3.60 | 2.15 | 22.70 | 80.0 | 63.0 | 7.7 | 146.0 | Nintendo | E |
14 | Kinect Adventures! | X360 | 2010.0 | Misc | Microsoft Game Studios | 15.00 | 4.89 | 0.24 | 1.69 | 21.81 | 61.0 | 45.0 | 6.3 | 106.0 | Good Science Studio | E |
15 | Wii Fit Plus | Wii | 2009.0 | Sports | Nintendo | 9.01 | 8.49 | 2.53 | 1.77 | 21.79 | 80.0 | 33.0 | 7.4 | 52.0 | Nintendo | E |
16 | Grand Theft Auto V | PS3 | 2013.0 | Action | Take-Two Interactive | 7.02 | 9.09 | 0.98 | 3.96 | 21.04 | 97.0 | 50.0 | 8.2 | 3994.0 | Rockstar North | M |
17 | Grand Theft Auto: San Andreas | PS2 | 2004.0 | Action | Take-Two Interactive | 9.43 | 0.40 | 0.41 | 10.57 | 20.81 | 95.0 | 80.0 | 9 | 1588.0 | Rockstar North | M |
18 | Super Mario World | SNES | 1990.0 | Platform | Nintendo | 12.78 | 3.75 | 3.54 | 0.55 | 20.61 | NaN | NaN | NaN | NaN | NaN | NaN |
19 | Brain Age: Train Your Brain in Minutes a Day | DS | 2005.0 | Misc | Nintendo | 4.74 | 9.20 | 4.16 | 2.04 | 20.15 | 77.0 | 58.0 | 7.9 | 50.0 | Nintendo | E |
df.shape #16719 rows, 16 columns. Get to know your data size for efficient analysis
(16719, 16)
df.columns #get all the columns
Index(['Name', 'Platform', 'Year_of_Release', 'Genre', 'Publisher', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales', 'Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'], dtype='object')
#rename the columns to avoid confusion.
df.rename(columns={'EU_Sales' : 'Europe_Sales', 'NA_Sales' : 'N.America_Sales', 'JP_Sales' : 'Japan_Sales'}, inplace=True)
df.head(10) # take a look at the data.I have chosen first 7 rows
Name | Platform | Year_of_Release | Genre | Publisher | N.America_Sales | Europe_Sales | Japan_Sales | Other_Sales | Global_Sales | Critic_Score | Critic_Count | User_Score | User_Count | Developer | Rating | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Wii Sports | Wii | 2006.0 | Sports | Nintendo | 41.36 | 28.96 | 3.77 | 8.45 | 82.53 | 76.0 | 51.0 | 8 | 322.0 | Nintendo | E |
1 | Super Mario Bros. | NES | 1985.0 | Platform | Nintendo | 29.08 | 3.58 | 6.81 | 0.77 | 40.24 | NaN | NaN | NaN | NaN | NaN | NaN |
2 | Mario Kart Wii | Wii | 2008.0 | Racing | Nintendo | 15.68 | 12.76 | 3.79 | 3.29 | 35.52 | 82.0 | 73.0 | 8.3 | 709.0 | Nintendo | E |
3 | Wii Sports Resort | Wii | 2009.0 | Sports | Nintendo | 15.61 | 10.93 | 3.28 | 2.95 | 32.77 | 80.0 | 73.0 | 8 | 192.0 | Nintendo | E |
4 | Pokemon Red/Pokemon Blue | GB | 1996.0 | Role-Playing | Nintendo | 11.27 | 8.89 | 10.22 | 1.00 | 31.37 | NaN | NaN | NaN | NaN | NaN | NaN |
5 | Tetris | GB | 1989.0 | Puzzle | Nintendo | 23.20 | 2.26 | 4.22 | 0.58 | 30.26 | NaN | NaN | NaN | NaN | NaN | NaN |
6 | New Super Mario Bros. | DS | 2006.0 | Platform | Nintendo | 11.28 | 9.14 | 6.50 | 2.88 | 29.80 | 89.0 | 65.0 | 8.5 | 431.0 | Nintendo | E |
7 | Wii Play | Wii | 2006.0 | Misc | Nintendo | 13.96 | 9.18 | 2.93 | 2.84 | 28.92 | 58.0 | 41.0 | 6.6 | 129.0 | Nintendo | E |
8 | New Super Mario Bros. Wii | Wii | 2009.0 | Platform | Nintendo | 14.44 | 6.94 | 4.70 | 2.24 | 28.32 | 87.0 | 80.0 | 8.4 | 594.0 | Nintendo | E |
9 | Duck Hunt | NES | 1984.0 | Shooter | Nintendo | 26.93 | 0.63 | 0.28 | 0.47 | 28.31 | NaN | NaN | NaN | NaN | NaN | NaN |
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16719 entries, 0 to 16718
Data columns (total 16 columns):
Name 16717 non-null object
Platform 16719 non-null object
Year_of_Release 16450 non-null float64
Genre 16717 non-null object
Publisher 16665 non-null object
N.America_Sales 16719 non-null float64
Europe_Sales 16719 non-null float64
Japan_Sales 16719 non-null float64
Other_Sales 16719 non-null float64
Global_Sales 16719 non-null float64
Critic_Score 8137 non-null float64
Critic_Count 8137 non-null float64
User_Score 10015 non-null object
User_Count 7590 non-null float64
Developer 10096 non-null object
Rating 9950 non-null object
dtypes: float64(9), object(7)
memory usage: 2.0+ MB
df.describe() #very important step in data analysis. Gives you a clear idea of sales and numerical figures
Year_of_Release | N.America_Sales | Europe_Sales | Japan_Sales | Other_Sales | Global_Sales | Critic_Score | Critic_Count | User_Count | |
---|---|---|---|---|---|---|---|---|---|
count | 16450.000000 | 16719.000000 | 16719.000000 | 16719.000000 | 16719.000000 | 16719.000000 | 8137.000000 | 8137.000000 | 7590.000000 |
mean | 2006.487356 | 0.263330 | 0.145025 | 0.077602 | 0.047332 | 0.533543 | 68.967679 | 26.360821 | 162.229908 |
std | 5.878995 | 0.813514 | 0.503283 | 0.308818 | 0.186710 | 1.547935 | 13.938165 | 18.980495 | 561.282326 |
min | 1980.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.010000 | 13.000000 | 3.000000 | 4.000000 |
25% | 2003.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.060000 | 60.000000 | 12.000000 | 10.000000 |
50% | 2007.000000 | 0.080000 | 0.020000 | 0.000000 | 0.010000 | 0.170000 | 71.000000 | 21.000000 | 24.000000 |
75% | 2010.000000 | 0.240000 | 0.110000 | 0.040000 | 0.030000 | 0.470000 | 79.000000 | 36.000000 | 81.000000 |
max | 2020.000000 | 41.360000 | 28.960000 | 10.220000 | 10.570000 | 82.530000 | 98.000000 | 113.000000 | 10665.000000 |
#filter out the game with most Global sales
filterr = (df['Global_Sales']==df['Global_Sales'].max())
df['Name'][filterr] #Wii Sports rules
0 Wii Sports Name: Name, dtype: object
df['Publisher'].value_counts()
Electronic Arts 1356 Activision 985 Namco Bandai Games 939 Ubisoft 933 Konami Digital Entertainment 834 ... Games Workshop 1 Simon & Schuster Interactive 1 Havas Interactive 1 Fortyfive 1 PM Studios 1 Name: Publisher, Length: 581, dtype: int64
Publisher_get = df.groupby(['Publisher'])
Publisher_get.get_group('Electronic Arts')
#For the sports lovers. the data below gives you look at all the games by EA_Sports
Name | Platform | Year_of_Release | Genre | Publisher | N.America_Sales | Europe_Sales | Japan_Sales | Other_Sales | Global_Sales | Critic_Score | Critic_Count | User_Score | User_Count | Developer | Rating | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
77 | FIFA 16 | PS4 | 2015.0 | Sports | Electronic Arts | 1.12 | 6.12 | 0.06 | 1.28 | 8.57 | 82.0 | 42.0 | 4.3 | 896.0 | EA Sports | E |
81 | FIFA Soccer 13 | PS3 | 2012.0 | Action | Electronic Arts | 1.06 | 5.01 | 0.13 | 1.97 | 8.16 | 88.0 | 37.0 | 6.6 | 348.0 | Electronic Arts | E |
85 | The Sims 3 | PC | 2009.0 | Simulation | Electronic Arts | 0.99 | 6.42 | 0.00 | 0.60 | 8.01 | 86.0 | 75.0 | 7.6 | 886.0 | The Sims Studio | T |
87 | Star Wars Battlefront (2015) | PS4 | 2015.0 | Shooter | Electronic Arts | 2.99 | 3.49 | 0.22 | 1.28 | 7.98 | NaN | NaN | NaN | NaN | NaN | NaN |
94 | FIFA 17 | PS4 | 2016.0 | Sports | Electronic Arts | 0.66 | 5.75 | 0.08 | 1.11 | 7.59 | 85.0 | 41.0 | 5 | 398.0 | EA Sports, EA Vancouver | E |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
16380 | Tiger Woods PGA Tour 2005 | PC | 2004.0 | Sports | Electronic Arts | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 91.0 | 16.0 | 4.5 | 39.0 | Headgate | E |
16489 | Poker for Dummies | PC | 2008.0 | Misc | Electronic Arts | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | NaN | NaN | tbd | NaN | Electronic Arts | T |
16491 | Command & Conquer Renegade | PC | 2002.0 | Shooter | Electronic Arts | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | NaN | NaN | NaN | NaN | NaN | NaN |
16510 | The Godfather (JP sales) | X360 | 2006.0 | Action | Electronic Arts | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | NaN | NaN | NaN | NaN | NaN | NaN |
16670 | Psychic Detective | PS | 1995.0 | Adventure | Electronic Arts | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | NaN | NaN | NaN | NaN | NaN | NaN |
1356 rows × 16 columns
filt = (df['Japan_Sales']==df['Japan_Sales'].max())
df['Publisher'][filt] #Nintendo company rules iN japan
#In other regions Wii game has the highest sales
4 Nintendo Name: Publisher, dtype: object
print(df['Japan_Sales'].isna().sum())
print(df['Publisher'].isna().sum()) #Publisher has a lot of empty values lets clean it up
0
54
type(np.nan) #Nan values create problems as they are float and rest of values are integers
float
plt.style.use('fivethirtyeight')
fig = plt.figure(figsize=(25,25))
plt.plot(df['Name'].head(10), df['N.America_Sales'].head(10), color='red', label='N.America_Sales')
plt.plot(df['Name'].head(10), df['Japan_Sales'].head(10), color ='pink', label='Japan_Sales')
plt.plot(df['Name'].head(10), df['Europe_Sales'].head(10), color='yellow', label='Europe_Sales')
plt.tight_layout()
plt.legend()
plt.xlabel('Famous Games')
plt.ylabel('Sales')
plt.title('Popularity of Famous Games')
Text(0.5, 1, 'Popularity of Famous Games')
df.Publisher = df.Publisher.fillna('')
df.Publisher.isna().sum() #Cleared Nan values with empty string
0
Nin = (df['Publisher']=='Nintendo')
EA = (df['Publisher']=='Electronic Arts')
#filtering out EA sports and Nintendo to compare which compay dominates
#Nintendo sales across various regions
print(df['Japan_Sales'][Nin].sum())
print(df['Europe_Sales'][Nin].sum())
print(df['N.America_Sales'][Nin].sum())
print(df['Global_Sales'][Nin].sum())
458.15
419.01
816.9700000000001
1788.81
#EA sales across various regions
print(df['Japan_Sales'][EA].sum())
print(df['Europe_Sales'][EA].sum())
print(df['N.America_Sales'][EA].sum())
print(df['Global_Sales'][EA].sum())
14.350000000000001
373.90999999999997
599.5
1116.96
#Lets analyse the Genre of Video Games which are popular
df['Genre'].value_counts()
Action 3370 Sports 2348 Misc 1750 Role-Playing 1500 Shooter 1323 Adventure 1303 Racing 1249 Platform 888 Simulation 874 Fighting 849 Strategy 683 Puzzle 580 Name: Genre, dtype: int64
df['Genre'].fillna('Unknown', inplace = True) #Nan values replaced with "Unknown string"
labels = ['Action', 'Sports', 'Misc', 'Role-Playing', 'Shooter', 'Adventure', 'Racing', 'Platform', 'Simulation', 'Fighting', 'Strategy', 'Puzzle', 'Unknown']
#Most popular games produced are of Action Genre followed by Sports
plt.style.use('fivethirtyeight')
fig = plt.figure(figsize=(11,11))
plt.pie(list(df['Genre'].value_counts()), autopct='%1.1f%%', labels=labels, wedgeprops={'edgecolor':'black'})
plt.title('Most Popular Genres in Video Games')
plt.tight_layout()
plt.show()
t = sns.pairplot(df)
t
#analyse the paiplots
C:\Users\ACER\Anaconda3\lib\site-packages\numpy\lib\histograms.py:824: RuntimeWarning: invalid value encountered in greater_equal
keep = (tmp_a >= first_edge)
C:\Users\ACER\Anaconda3\lib\site-packages\numpy\lib\histograms.py:825: RuntimeWarning: invalid value encountered in less_equal
keep &= (tmp_a <= last_edge)
<seaborn.axisgrid.PairGrid at 0x270b356eac8>
df['Critic_Score']
0 76.0 1 NaN 2 82.0 3 80.0 4 NaN ... 16714 NaN 16715 NaN 16716 NaN 16717 NaN 16718 NaN Name: Critic_Score, Length: 16719, dtype: float64
df['Critic_Score'].isna().sum() #lots of values in Critic score
8582
df['Critic_Score'].median()
71.0
#Replace Nan values in Critic_score with median Values
df['Critic_Score'].fillna(71, inplace=True)
df['Critic_Score'].max()
98.0
filtera = (df['Critic_Score']==df['Critic_Score'].max())
df['Name'][filtera] #best games according to critic scores
51 Grand Theft Auto IV 57 Grand Theft Auto IV 227 Tony Hawk's Pro Skater 2 5350 SoulCalibur Name: Name, dtype: object
"""So GTA, Tony Hawk's Pro Skater 2 and SoulCalibur dominate when it comes to Critics ratings.So these are the games you should
loook out for next time you go game shopping"""
"So GTA, Tony Hawk's Pro Skater 2 and SoulCalibur dominate when it comes to Critics ratings.So these are the games you should\nloook out for next time you go game shopping"
df['Rating'].value_counts()
E 3991 T 2961 M 1563 E10+ 1420 EC 8 RP 3 K-A 3 AO 1 Name: Rating, dtype: int64
df['Rating'].isna().sum() #Nan values which create the problems
6769
games_with_no_rating = df['Rating'].isna()
df['Name'][games_with_no_rating]
#the games with no ratings are mostly normal games which everyone can play and not adult games
1 Super Mario Bros. 4 Pokemon Red/Pokemon Blue 5 Tetris 9 Duck Hunt 10 Nintendogs ... 16714 Samurai Warriors: Sanada Maru 16715 LMA Manager 2007 16716 Haitaka no Psychedelica 16717 Spirits & Spells 16718 Winning Post 8 2016 Name: Name, Length: 6769, dtype: object
#Replace Nan values with E Rating i.e Everyone can play it
df['Rating'].fillna('E', inplace=True)
df['Rating'].value_counts()
list(df['Rating'].value_counts())
[10760, 2961, 1563, 1420, 8, 3, 3, 1]
from collections import Counter
a = list(df['Rating'])
letter_counts = Counter(a)
d = pd.DataFrame.from_dict(letter_counts, orient='index')
d.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x270bb67ce08>
#In the above Barplot E rating dominates which signifies most games made in industries are for people of all ages.
df
Name | Platform | Year_of_Release | Genre | Publisher | N.America_Sales | Europe_Sales | Japan_Sales | Other_Sales | Global_Sales | Critic_Score | Critic_Count | User_Score | User_Count | Developer | Rating | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Wii Sports | Wii | 2006.0 | Sports | Nintendo | 41.36 | 28.96 | 3.77 | 8.45 | 82.53 | 76.0 | 51.0 | 8 | 322.0 | Nintendo | E |
1 | Super Mario Bros. | NES | 1985.0 | Platform | Nintendo | 29.08 | 3.58 | 6.81 | 0.77 | 40.24 | 71.0 | NaN | NaN | NaN | NaN | E |
2 | Mario Kart Wii | Wii | 2008.0 | Racing | Nintendo | 15.68 | 12.76 | 3.79 | 3.29 | 35.52 | 82.0 | 73.0 | 8.3 | 709.0 | Nintendo | E |
3 | Wii Sports Resort | Wii | 2009.0 | Sports | Nintendo | 15.61 | 10.93 | 3.28 | 2.95 | 32.77 | 80.0 | 73.0 | 8 | 192.0 | Nintendo | E |
4 | Pokemon Red/Pokemon Blue | GB | 1996.0 | Role-Playing | Nintendo | 11.27 | 8.89 | 10.22 | 1.00 | 31.37 | 71.0 | NaN | NaN | NaN | NaN | E |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
16714 | Samurai Warriors: Sanada Maru | PS3 | 2016.0 | Action | Tecmo Koei | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 71.0 | NaN | NaN | NaN | NaN | E |
16715 | LMA Manager 2007 | X360 | 2006.0 | Sports | Codemasters | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 71.0 | NaN | NaN | NaN | NaN | E |
16716 | Haitaka no Psychedelica | PSV | 2016.0 | Adventure | Idea Factory | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 71.0 | NaN | NaN | NaN | NaN | E |
16717 | Spirits & Spells | GBA | 2003.0 | Platform | Wanadoo | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 71.0 | NaN | NaN | NaN | NaN | E |
16718 | Winning Post 8 2016 | PSV | 2016.0 | Simulation | Tecmo Koei | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 71.0 | NaN | NaN | NaN | NaN | E |
16719 rows × 16 columns
df['Year_of_Release'] = pd.to_datetime(df['Year_of_Release'], format='%Y')
df['Year_of_Release'].min()
Timestamp('1980-01-01 00:00:00')
df['Year_of_Release'].max()
Timestamp('2020-01-01 00:00:00')